
Matrix Algebra I.

Def ′ n : An m  n matrix A is an array of real numbers of the form

A 

a11 a12  a1n

a21 a22  a2n

   

am1 am2  amn

where aij denotes the number in row i and column j.

Rks:
 aij is called the i, jth component of the matrix A
 We sometimes write A  aij or A ∈ mn

 If n  1, A is called a column vector, and we often write A ∈ m and write A  ai
 If m  1, A is called a row vector, and we often write A ∈ n and write A  aj
 vectors are column vectors, unless otherwise specified
 If m  n  1, A is a scalar ( i.e., a number), A ∈ 
 If m  n, A is called a square matrix.
 We could define matrices using other objects as components, such as complex numbers or functions, but
we won’t encounter them in this course. We will, however, consider in Section 5b and later in the course a
straightforward generalization of our notion of matrix to one with components that are themselves matrices
(i.e. a partitioned matrix).



Operations on Vectors and Matrices

1. Equality of matrices
Matrices A  aij and B  bij are said to be equal, denoted A  B, if
(i) they have the same number of rows and columns
(ii) ∀i, j aij  bij

Rk:
 A  B  B  A (equality is a symmetric relationship)
 If A and B are not equal, we write A ≠ B.



2. Addition of matrices

Suppose A  aij and B  bij have the same number of rows and columns, i.e. A ∈ mn and B ∈ mn. The
sum A  B ∈ mn is the matrix A  B  aij  bij.

Example:

A 
1 2 3 4
5 6 7 8

B 
2 1 2 1
5 3 4 2

A  B 
3 3 5 5
10 9 11 10

Notation
 An m  n matrix whose components are all zero will be denoted 0mn or, when clear from the context, just 0
 If A  aij, then −A  −aij

Properties of matrix sums
A  B  B  A (commutative)

A  B  C  A  B  C (associative)
A  0  A (zero is the identity element)

A  −A  0 (inverse)
Rks:

 We usually write A  −B as A − B
 Matrix addition is not defined unless the two matrices are conformable for addition (i.e., have the same
number of rows and columns)
 We can add and subtract conformable matrices just like real numbers.



3. Multiplication by a scalar

Let A ∈ mn and c ∈ . We define their product by
cA  Ac  c  aij ∈ mn

Example

A 
1 2 3 4
5 6 7 8

c  5

cA 
5 10 15 20
25 30 35 40

Properties of scalar multiplication

Suppose c,d ∈  and A,B ∈ mn

cA  dA  c  dA (distributive property 1)
cA  cB  cA  B (distributive property 2)

Rks:
 The n  n matrix with unity on the main diagonal and 0 else is called the identity matrix, denoted In, i.e.

In 

1 0  0
0 1  0
   

0 0  1

 If A  cIn where In is the identity matrix, then we say A is a scalar matrix.
 The operations of matrix addition and scalar multiplication as we have defined them make the set of m  n
matrices a mathematical object known as a vector space (over the reals). So, in particular (and reassuringly!)
the vectors in m constitute a vector space.



4. Transpose
If A  aij ∈ mn, then its transpose is A ′  aji ∈ nm

Rks:
 In words, the transpose takes the rows of A and makes them the columns of A ′

 If A  A ′, then A is called symmetric. Note that a symmetric matrix must be square. Why?
 We sometimes denote the transponse by A

Properties of the transpose operator
A ′ ′  A

A  B ′  A ′  B ′

cA ′  cA ′



5. Products of Matrices
5a Inner products (for vectors)

Let x,y ∈ m. Explicitly, write

x 
x1



xm

y 
y1



ym

We define their inner product as

x ′y ∑
i1

m

xiyi

Rks:
 Notice that x ′y ∈ , i.e. the inner product of two vectors is a scalar.
 The notation suggests that we first transpose x into a row vector and them multiply it with y. This is
suggestive and consistent with the notion of matrix multiplication below.
 Other notations that you might see for the inner product are x ∘ y or  x, y 
 Other names for the inner product are the dot product or scalar product. DO NOT confuse the scalar
product (i.e. the product of two vectors that is a scalar) with a scalar multiple (i.e. the product of a vector by a
scalar which yields a vector)!

Example:

x 

1
2
3
4

y 

2
1
−1
3

so



x ′y  1  2  2  1  3  −1  4  3
 13

Properties of the inner product

Let x,y, z ∈ m and c ∈ . Then
x ′y  y ′x (symmetry)

x ′cy  cx ′y (scalar product commutes with multiplication by scalar)
x ′y  z  x ′y  x ′z (distributive law)

5b Matrix product

Let A ∈ mn and B ∈ np. It is convenient to write A in terms of its rows and B in terms of its columns

A 

a1
′

a2
′



am
′

and B  b1 b2  bp

where ai
′ ∈ 1n denotes the ith row of A and bj denotes the jth column of B. Then we write the product AB ∈ mp

as

AB ≡

a1
′ b1 a1

′ b2  a1
′ bp

a2
′ b1 a2

′ b2  a2
′ bp

   

am
′ b1 am

′ b2  am
′ bp

that is,
ABij  ai

′bj



Rks:
 A and B are said to be conformable for multiplication (i.e. the product AB is defined) iff the number of
columns of A equals the number of rows of B.
 As we have defined the product, we say A is postmultiplied by B or, equivalently, that B is premultiplied by
A.
 We write AA ≡ A2 (Note tha A must be square for this to make sense. Why?). Am is defined analogously
for m ∈ ℕ.
 Recall

In 

1 0  0
0 1  0
   

0 0  1

 If A  A2, we say that A is idempotent
 Notice that I2  I and 02  0
 If A is square and ∃B such that AB  I then B is called the (multiplicative) inverse of A and we write B  A−1
 If A ′  A−1, we say that A is an orthogonal matrix.
 Notice that I′  I−1.



Properties of matrix multiplication

Let A,B,C denote matrices. Assume A ∈ mn and that the other matrices have dimensions that are implicitly
determined so that they are conformable for the operations used.

1. AB ≠ BA (in general)

2. AB  C  AB  AC (distributive law 1)

3. A  BC  AC  BC (distributive law 2)

4. ABC  ABC (associative law)

5. AB ′  B ′A ′

6. 0rmA  0rn; A0ns  0ms

7. ImA  AIn  A

8. A−1′  A ′−1

9. AB−1  B−1A−1 provided both inverses exist



Computing the matrix inverse: 2  2 case

Suppose

A 
a11 a12

a21 a22

 The determinant of the matrix A is denoted detA and defined by
detA  a11a22 − a21a12

 If detA ≠ 0, then ∃ A−1 such that AA−1  A−1A  I2 and it is given by

A−1  1
detA

a22 −a12

−a21 a11

Example

A 
2 3
4 5

detA  10 − 12  −2

A−1  1
−2

5 −3
−4 2

Rks:
 If detA ≠ 0, then A is called invertible or nonsingular
 If detA  0, then A is called noninvertible or singular


